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EDMI Microsystems and Microelectronics

MICRO-614: Electrochemical Nano-Bio-Sensing
and Bio/CMOS interfaces

Lecture #7
Checking Probes-layer quality
(RM+SPR+SEM+AFM)
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Lecture Outline

(Book Bio/CMOS: Chapter’ paragraphs § 5.2.1-2)

Resonant Mirror
Surface Plasmon Resonance

To monitor the self-assembly process

Transmission Electron Microscopy
Scanning Electron Microscopy
Atomic Force Microscopy
Scanning Tunneling Microscopy

To check the film quality
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Three-layers Reflection
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Three-layers Reflection
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The Reflection coefficient
and the Electrical Field
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Three-layers Reflection
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TIAsys plus Affinity Sensor
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Yield Monitoring

Yield = Percentage of covered surface
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Three-layers Reflection
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The Propagation along the interface
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The Evanescent wave
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Permittivity (&, )
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Negative Permeability of metals

Zhang et al. J. Opt. Soc. Am. B/Vol. 23, No. 3/March 2006 pag 434
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Negative Permittivity in metallic clots

Permeability ( £)
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Negative dielectric constant

k., g 2
B, =Byt Yo i
F=ma=m >

: ot
z F=8Et =—€E5x=—€£
FE ;l>+++++++++ F = ene 5)6' ‘90
n: - E:T & —€
= €0 A2 2
= 0°ox e'n,ox
n k > + — O
E. Ot me,

Ei

2 0?
en

C();: £ ?ZO
me, ot :

(c) S.Carrara

15



Electronic Waves
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Simulation of
Evanescent wave propagation

410 nm for HeNe [ESEIRREEIEES
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Penetration of the Evanescent Wave

For an amplitude of 1/3 of the value in z=0, we have
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For gold, with relative magnetic permeability close to one and relative
electric permittivity equal to 6.9, we obtain a thickness of

1 A 400
Zoold = 17 | — — ol ~ 152 nm.
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For nickel, with permeability and permittivity equal to 100 and 10
(respectively), we get: 1 400 nm
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Penetration of the Evanescent Wave

&I he Plasmon
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Perturbation of the Evanescent Wave

A"A / The Diminished Plasmon
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A Plasmon Resonance
based Biosensor

BIACORE 3000

(c) S.Carrara
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Working Principle

Ligand - analyte
binding Evanescent

Light ® ¢ Field
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The presence of the complexes onto the gold surface will change the angle
of resonance for the formation of the Surface Plasmon.
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Characterization of Monoclonal antibodies
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Shift in the resonant angle to sense IgG adsorption
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Kinetic Studies
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The kinetics could is reached by means of the change
of the reflected intensity at fixed angle
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Angle of Detector

Detection of Binding Events

Analyte Flow
" <

Molecular uptake as monitored by SPR
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SPR on SAM

Figure 7. Comparison of the hybridization of a truncated comple-
ment (c-A 21) with the hybridization of the full-length complement
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Figure 2. Control experiment to test DNA specificity. Both c-A

and c-B were flowed over a sequence A ssDNA/OEG SAM, but
only the complementary DNA hybridized. The ssDNA/OEG surface

(c-A 24). The ssDNA/OEG surface was prepared from a solution
with a DNA mole fraction of 0.02. was prepared from a solution with a DNA mole fraction of 0.02.

Langmuir, Vol. 22, No. 10, 2006

DNA hybridization as monitored by SPR
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How to characterize
the Probes Immobilization?

We have seen what are the
mechanisms of self-assembly!

How to monitor the self-
assembly process?

How to check the film quality?

(c) S.Carrara 27
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Four different Microscopies

Transmission Electron Microscopy (TEM)
Scanning Electron Microscopy (SEM)
Atomic Force Microscopy (AFM)
Scanning Tunneling Microscopy (STM)

(c) S.Carrara 28



All are Scanning Microscopies

It works for all the

Scanning Microscopies

The sample scanning generates an 1mage visualized
with computer graphic tools

(c) S.Carrara 29



SEM Microscopy

Nanoparticles Nanotubes Chromosome fiber
Proteins Bacteria
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Electron Microscopies

Scanning I
Electron
Microscopy * *

Transmission
Electron
Miscroscopy

(c) S.Carrara
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Electron Microscopy Principle

[ Emitted electrons from the 0.1-40 KeV
same atom due to other
electrons filling inner-shell
vacancies created by
scattered ones ]

Incident
Electron Beam

Auger Electron
- Backscattered

Electron

SEM Microscopy

Secondary

Charactenistic

X-ray Electron
Specimen l ————— E “?:;?;3: !
Transmission
Electron

TEM Microscopy
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Electron Microscopies

Fluo-screen Monitor Computer

(c) S.Carrara
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TEM Imaging

Cell of Cyanobacteria Microcystis by TEM
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TEM Imaging
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SEM Imaging

Antigens localized on the surface
of bacteria cells

(c) S.Carrara
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Isolated Chromatin (DNA-macromolecules including hystons and
not-histons proteins) of about 30 nm and with small filament
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End part of Nodularia
(cyanobacteria in filament shape)

(c) S.Carrara
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AFM detection principle

: Laser Diode

Position-sensitive
Cantilever Spring

Photodetector
F/

Detection principle 1s obtained by monitoring the
bending of the cantiliver that host the tip
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3 major abilities:

1. force measurement
between probe-sample

2. imaging from forces that
sample imposes on probe
(3D, pseudocolor)

3. manipulation use forces

to change sample
properties




AFM Tip fabrication

pyramidal pit
4

# silicon nitride —
cantilever
silicon wafer
Pit etching in Si Si;N,4 coating Si underetching

AFM tips are typically sculpted on silicon wafers
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SEM on Silicon nitride probes

Tip Sidewall Angles of Silicon Nitride Probes
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(credit by Cambridge University) 41



Optics versus AFM

The fluorescence intensity image
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Fluorescent Nanoparticles with average size of about 40 nm
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AFM Imaging

TEM images

Gold nanoparticles made off gold core and a
thiols-shell to stabilize the particle

(c) S.Carrara
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AFM Imaging in Air

dx.doi.org/10.1021/bm301063m | Biomacromolecules 2012, 13, 3503—-3509

A protein (Reaction ©
Center) located <,
In between a
metallic nanogap © 90
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AFM in liquid

AFM 1s also used fully 1n water for imaging typically
biological systems 1n their native environments
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AFM Imaging in liquid

-ab

AFM imaging on Antibodies
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Dense nanostructure arrays
J

For densely packed features the tip size can also cause errors in determining
the height of the islands, or the overall appearance of the surface
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STM Microscopy
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The STM Microscopy is based on tunneling currents as
established in between the tip and the sample
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STM Microscopy
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The STM Microscopy is based on tunneling currents as
established in between the tip and the sample
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STM imaging
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Carbon atoms in the lattice structure of the highly oriented
pyrolytic graphite. Image by STM in air.
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STM imaging
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Organic thiols self-assembled onto highly oriented pyrolytic
graphite. Image by STM in air.
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