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Lecture #7
Checking Probes-layer quality 
(RM+SPR+SEM+AFM)

EDMI Microsystems and Microelectronics
MICRO-614: Electrochemical Nano-Bio-Sensing 

and Bio/CMOS interfaces 
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•Resonant Mirror
•Surface Plasmon Resonance

•Transmission Electron Microscopy
•Scanning Electron Microscopy
•Atomic Force Microscopy
•Scanning Tunneling Microscopy

Lecture Outline
(Book Bio/CMOS: Chapter’ paragraphs §5.2.1-2)

To monitor the self-assembly process

To check the film quality
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Three-layers Reflection
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Three-layers Reflection
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The Reflection coefficient 
and the Electrical Field
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The Fresnel Coefficients

Snell’s 
Law
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Three-layers Reflection
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IAsys plusAffinity Sensor

Product
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9

Yield = Percentage of covered surface

Yield Monitoring

3 t [min.]

Base Line
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Three-layers Reflection
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The Propagation along the interface
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The Evanescent wave
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Negative Permeability of metals
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Negative Permittivity in metallic clots
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Negative dielectric constant
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Electronic Waves
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Simulation of 
Evanescent wave propagation

410 nm for HeNe laser in glass



Penetration of the Evanescent Wave
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For an amplitude of 1/3 of the value in z=0, we have 

By extracting z:

For gold, with relative magnetic permeability close to one and relative 
electric permittivity equal to 6.9, we obtain a thickness of 

For nickel, with permeability and permittivity equal to 100 and 10 
(respectively), we get:
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The Evanescent wave

The Plasmon

≈50 nm
Gold
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Perturbation of the Evanescent Wave

The Diminished Plasmon

The Diminished Evanescent wave

The Adsorbed Molecules

The Increased Intensity 

≈50 nm
Gold
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BIACORE 3000

A Plasmon Resonance 
based Biosensor
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The presence of the complexes onto the gold surface will change the angle 
of resonance for the formation of the Surface Plasmon. 

Working Principle



(c) S.Carrara 23

Shift in the resonant angle to sense IgG adsorption

Characterization of Monoclonal antibodies

Bo Liedberg, et al, Biosensors & Bioelectronics 10 (1995) i-iv
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Kinetic Studies
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The kinetics could is reached by means of the change 
of the reflected intensity at fixed angle
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Molecular uptake as monitored by SPR

Detection of Binding Events
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DNA hybridization as monitored by SPR

SPR on SAM
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How to characterize 
the Probes Immobilization?

We have seen what are the 
mechanisms of self-assembly!
How to monitor the self-
assembly process?
How to check the film quality?



(c) S.Carrara 28

Four different Microscopies

1. Transmission Electron Microscopy (TEM)
2. Scanning Electron Microscopy (SEM)
3. Atomic Force Microscopy (AFM)
4. Scanning Tunneling Microscopy (STM)
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All are Scanning Microscopies

It works for all the 
Scanning Microscopies

The sample scanning generates an image visualized 
with computer graphic tools
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SEM Microscopy

1 m0.01 nm 1 nm 1 μm 1 mm

Cell
Bacteria

Chromosome fiber

Virus
Proteins

Nanotubes

DNA

Nanoparticles

Atoms
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Electron Microscopies



(c) S.Carrara 32

Electron Microscopy Principle
[ Emitted electrons from the 

same atom due to other 
electrons filling inner-shell 

vacancies created by 
scattered ones ]
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Electron Microscopies
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Cell of Cyanobacteria Microcystis by TEM

TEM Imaging
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Virus T4 Bacteriophages 

TEM Imaging
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Antigens localized on the surface 
of bacteria cells

SEM Imaging
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Isolated Chromatin (DNA-macromolecules including hystons and 
not-histons proteins) of about 30 nm and with small filament

SEM Imaging
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End part of Nodularia 
(cyanobacteria in filament shape)

3D effect on SEM

SEM Imaging



AFM detection principle

Detection principle is obtained by monitoring the 
bending of the cantiliver that host the tip 
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AFM Tip fabrication

AFM tips are typically sculpted on silicon wafers
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SEM on Silicon nitride probes
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Optics versus AFM

Fluorescent Nanoparticles with average size of about 40 nm
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Gold nanoparticles made off gold core and a 
thiols-shell to stabilize the particle

AFM Imaging
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A protein (Reaction 
Center) located 
in between a 
metallic nanogap

AFM Imaging in Air



AFM in liquid

AFM is also used fully in water for imaging typically 
biological systems in their native environments
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AFM Imaging in liquid

AFM imaging on Antibodies
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For densely packed features the tip size can also cause errors in determining 
the height of the islands, or the overall appearance of the surface  

Blunt tip Sharp tip

200 nm 200 nm

Dense nanostructure arrays
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STM Microscopy

The STM Microscopy is based on tunneling currents as 
established in between the tip and the sample
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STM Microscopy

The STM Microscopy is based on tunneling currents as 
established in between the tip and the sample

V

d
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STM imaging

Carbon atoms in the lattice structure of the highly oriented 
pyrolytic graphite. Image by STM in air.

5.1 nm
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STM imaging

Organic thiols self-assembled onto highly oriented pyrolytic 
graphite. Image by STM in air.

2.5 nm


